2x^2+x=2025

Simple and best practice solution for 2x^2+x=2025 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+x=2025 equation:



2x^2+x=2025
We move all terms to the left:
2x^2+x-(2025)=0
a = 2; b = 1; c = -2025;
Δ = b2-4ac
Δ = 12-4·2·(-2025)
Δ = 16201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{16201}}{2*2}=\frac{-1-\sqrt{16201}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{16201}}{2*2}=\frac{-1+\sqrt{16201}}{4} $

See similar equations:

| 12-1x=-2x-10+1x | | 51/2÷2=b | | 15x+50=20x+30 | | 127*2x+41=180 | | -9=15+m/3 | | -5=1/2j | | 12=p+-8 | | 15x+35=-5x-20 | | 16x^2+112x-1323=0 | | 3(2a-6)+4a=16 | | 4/5(12-5x)=50 | | 16x^2+112x+1323=0 | | b+35=16 | | M-2(4+2m)=-4m-2 | | x+2x-1/3=41/6 | | x(-5)=35 | | –4d−2=–5d+8 | | 1/2x+2/4=6 | | 4m+1+m=14-6 | | 95=180-a | | |6n+6|+18=9 | | 6g=276 | | 7c=217 | | −2x+2=4 | | 6x+9=-56 | | y(3)=-12 | | 5x-2(3x)=44 | | 4(x+3)=-2(x-7) | | n-23=71 | | 360-y=250 | | 4x(x)=96 | | -r/4=-3 |

Equations solver categories